Chapter 12: Dynamic Objects 401

Pointer to Object Definition

Pointers can be used to hold addresses of objects, just as they can hold addresses of primitive and user-
defined data items. The need for using pointers to objects becomes clear when objects are to be created
while the program is being executed, which is an instance of dynamic allocation of memory. The new
operator can also be used to obtain the address of the allocated memory area besides allocating storage
area to the objects of the given class. Thus, the address returned by the new operator may be used to
initialize a pointer to an object.

The general format for defining a pointer to an object is shown in Figure 12.1, which 1s similar to the
way in which pointers to other data types are declared and defined. A pointer can be made to point to
an existing object, or to a newly created object using the new operator. The address operator & can be
used to get the address of an object, which is defined statically during the compile time. In the following
statemeni

ptr_to_object = & object;
The & operator in the expression &object returns the address of the object and the same is
initialized to a pointer variable ptr_to_object.

name of the class name of the pointer to the object qf the class

v

ClassName * ptr_to_object;

address of a statically created object

Y

ptr_to_object = &object;

object created dynamically

Ya

ptr_to_object = new ClassName;

Figure 12.1: Syntax of defining pointer to object

Accessing Members of Objects
In order to utilize a pointer to an object, it is necessary to have some means by which the members of
that object can be accessed and manipulated. As in the case of pointers to structures, there are two
approaches to referring and accessing the members of an object whose address resides in a pointer. The
operator - > can also be used to access member of an object using a pointer to objects. The expression
to access a class member using pointer is as follows:

pointer_to_object -> nember_name

or

*pointer_to_object .member_name
The member to be accessed through the object pointer can be either a data, or function member (see

402 Mastering C++

Figure 12.2). The program ptrobji.cpp illustrates the definition of pointers to objects and their
usage in accessing members of a class.

class XYZ
{
private:
int a;
int b;
public:
int c.d;
int funcl(); 4— objl

};
XYZ objl;
XYZ *ptr;

oo |e

ptr = &objl;

ptr->c

ptr->funcl();

Figure 12.2: Pointer accessing class members

/ / ptrobjl.cpp: pointer to object, pointing to statically created objects
- #include <iostream.h>
class someclass
{
public:
int datal;
char data2;
someclass ()
{ .
cout << “Constructor someclass() is invoked\n”;
datal =1, data2" = ‘A’;
} -
~someclass ()
{
cout << “Destructor ~someclass() is invoked\n”;
}
void show()
{
cout << “datal = * << datal;
cout << “ data2 = “ << data2 << endl;
}
}i
void main(void)
{
someclass *ptr; // define a pointer to object of class someclass
someclass objectl; // object of type someclass created statically
ptr = &objectl;
cout << “Accessing object through objectl.show()...” << endl;

Chapter 12: Dynamic Objects 403

objectl.show() ;

cout << “Accessing object through ptr->show()...” << endl;
ptr->show() ; // it can be *ptr.show();

}

ﬁun

Constructor someclass() is invoked
Accessing object through objectl.show()...
datal = 1 data2 = A

Accessing object through ptr->show() ...
datal = 1 data2 = A

Destructor ~someclass() is invoked

In main (), the statement,
ptr = &objectl;
assigns the address of the object objectl of the class someclass to the pointer ptr. The state-
ment
ptr->show() ;
or
*ptr.show()
invokes the member function show () of the object pointed to by the pointer ptr. It points to the
objectl, and hence executes the function show () of the respective class.

Creating and Deleting Dynamic Objects

A dynamic object can be created by the execution of anew operator expression. The syntax for creating
a dynamic object using the new operator is as follows:

new ClassName

It returns the address of a newly created object. The returned address of an object can be stored in a
variable of type pointer to object (ptr_to_object) as follows:

ptr_to_object = new ClassName;

While creating a dynamic object, if a class has the default constructor, it is invoked as a part of object
creation activity. Once a pointer is holding the address of a dynamic object, its members can be
accessed by using -> operator.

The entity that executes the new expression is the dynamic object’s creator. The creator may be a
(member) function, an object, or a class. The creator of a dynamic object must be in a position to fully
determine the object’s lifetime. The creator cannot be inferred from the source code alone. Although,
the creator is determined by the intent of the programmer, the language constrains the choice. In the
* program ptrobjl.cpp, the function main () is the creator of the object pointed to by variable
ptr_to_object and hence, it is 1esponsible for destroying it.

The syntax of the delete operator releasing memory allocated to dynamic object is as follows:
delete ptr_to_object;

It destroys the object pointed to by ptr_to_object variable. It also invokes the destrictor of the
class if it exists as a part of object destruction activity before releasing memory allocated to an object
by the new operator.

404 Mastering C++

The program ptrobj2. cpp illustrates the binding of dynamic objects' address to a pointer vari-
able. The pointer defined is initialized with the address returned by the new operator, which actually
creates the object.

// ptrobj2.cpp: pointer to object, pointing to dynamically created objects
include <iostream.h>
class someclass
{
public:
int datal;
char data2;
someclass ()
{
cout << “Constructor someclass() is invoked\n”*;
datal = 1, data2 = ‘A‘;
)
~someclass ()
{
cout << “Destructor ~someclass() is invoked\n*;
}
void show ()
{
cout << “datal = * << datal;
cout << " data2 = “ << data2 << endl;
}
}:
void main(void)
{ .
someclass *ptr; // define a pointer to object of class someclass
cout << “Creating dynamic object...” << endl;
ptr = new someclass; // object created dynamically
cout << “Accessing dynamic object through ptr->show()...” << endl;
ptr->show();
coput << “Destroying dynamic object...” << endl;
delete ptr; // object destroyed dynamically
}

Bun

Creating dynamic object...

Constructor someclass () .is invoked

Accessing dynamic object through ptr->show()...
datal = 1 data2 = A

Destroying dynamic object...

Destructor ~someclass() is invoked

In main (), the statement
ptr = new someclass; // object created dynamically
creates the nameless object of the class someclass dynamically and assigns its address to the object
pointer ptr. It executes the constructor of the class someclass automatically during the creation of
dynamic objects. The default argument constructor initializes the data members datal and data2.

Chapter 12: Dynamic Objects 405

These data can be referenced by other member functions of its class. The statement

ptr->show() ;
invokes the member function show () of the object pointed to by the pointer variable ptr. It points to
the object of the class someclass and hence, executes its member function show () as illustrated in
Figure 12.3.

When the dynamic object pointed to by the variable ptr goes out of scope, the memory allocated
to that object is not released automatically. It must be performed explicitly as follows:

delete ptr;
The above statement releases the memory allocated to the dynamically created object by the new
operator. In addition to this, it also invokes the destructor function ~someclass () to perform cleanup
of resources allocated to the object's data members. In this class, object data members are not allocated
with any resources dynamically and hence, no need to release them explicitly.

class someclass

{

» void show(); objl
L, obj2
someclass *ptr;

ptr

someclass objl;
someclass o0bj2;

ptr = &objl; E——'objl

ptr obj2
objl
ptr
ptr = new someclass; —
ptr->show();
objl
obj2
L—

Figure 12.3: Object pointers and dynamic binding

406 Mastering C++

Whenever it is necessary to determine the size of the memory area allocated to an object by the new
operator, the sizeof operator may be used. For instance, the expression sizeof (someclass)
returns the number of bytes required for the creation of an object of the class someclass.

Dereferencing Pointers

As the new operator returns a pointer to an area of memory that holds an object, it should be possible
to refer to the original object by dereferencing the pointer. This method of memory allocation requires
the use of both, the indirection operator * and the reference operator &. The general format for such a
declaration is shown in Figure 12.4.

data indirection operator [dynamic allocation

~N VT

DataType & ReferenceVar=* (new DataType);

Figure 12.4: Syntax of dereferencing pointers

Such reference variables can be used like other variables without any special mechanism. The
program useref . cpp illustrates the concept of binding reference variables at runtime.

// useref.cpp: Illustrates a variant usage of reference operator
#include <iostream.h>
void main{void)

{

int & tl = *(new int); // Declares an integer variable using new
int t2, t3; // Regular int definitions-

tl = t3 = 5;

t2 = 10;

tl = tl + t2;

cout << "Sum of " << t3; // Display old value af t1l1

cout << " and * << t2 ;

cout << " is : " << tl; // Prints sum of tl and t2
}

Run
Sum of 5 and 10 is : 15

Observe that the variable t1 in the program is a variable of type reference to an integer. Also, the
pointer returned by new is dereferenced, * (new int), in order to refer to the original integer object
which is finally associated with the reference variable t 1. In the case of reference variables to class
objects or structures, the members are accessed with the usual dot membership operator.

Reference to Dynamic Objects
The address of dynamic objects returned by the new operator can be dereferenced and reference to
them can be created as follows:

ClassName &RefObj = * (new ClassName) ;
The reference to object Re£Obj can be used as a normal object; the memory allocated to such objects
cannot be released except during the termination of the program. The program refobj . cpp illus-
trates the dereferencing of objects using reference pointers.

Chapter 12: Dynamic Objects 407

// refobj.cpp: reference to dynamic objects
#include <iostream.h>

#include <string.h>

class student

{
private:
int roll_no; // roll number
char name[20 }; // name of a student
public:
// initializing data members
void setdata(int roll_no_in, char *name_in)
{
roll_no = roll_no_in;
strcpy(name, name_in);
}
// display data members on the console screen
void outdataf()
{
cout << "Roll No = " << roll _no << endl;
cout << "Name = " << name << endl;
}
}:
void main()
{

student &sl = *(new student); // reference to a dynamic object
sl.setdata(1, "Savithri");

sl.outdata();

student &s2 = * (new student); // reference to a dynamic object
s2.setdata(2, “Bhavani" };

s2.outdata();

student s3;
s3.setdata{ 3, “Vani");
student &s4 = s3; // reference to static object .

s3.outdata() ;
sd .outdatal();
}

Run

Roll No =1
Name = Savithri
Roll No = 2
Name = Bhavani
Roll No = 3
Name = Vani
Roll No = 3
Name = Vani

In main (), the statement
student &sl = *(new student) ;

creates a dynamic object of the class student and binds it to the reference variable s1. The expres-
sion * (new student) creates a dynamic object. The memory allocated to such objects cannot be

408 Mastering C++

released except during the termination of the program. The statement
sl.setdata(1, "Savithri");

accesses the member setdata () in the same way as normal objects accesses. The statement
student &s4 = s3;

creates the reference to normal object with the name s 4. Note that, reference objects are accessed in the
same way whether normal, or dynamic type objects.

12.3 Live Objects

The operator new allocates memory big enough to store an object and initializes it with the required

data. Objects created dynamically with their data members initialized during creation are known as live

objects. To create a live object, constructor must be invoked automatically which performs initialization

of data members. Similarly, the destructor for an object must be invoked automatically before the

memory for that object is deallocated. The syntax for creating a live object is as follows:
str_to_object = new ClassName(parameters)

A class whose live object is to be created must have atleast one constructor. The number of
parameters passed specified at the point of creation of dynamic objects can be zero or more. If no
arguments are specified, the default constructor (constructor with zero arguments) will be invoked
automatically. If a class has more than one constructor, the constructor that matches with the param-
eters specified is invoked for initialization of the dynamic object. Note that there is no special syntax for
releasing memory allocated to the objects, which are created and initialized by passing parameters.
Hence, the syntax for destroying live objects is the samne as that of normal dynamic objects.

The program student3 . cpp illustrates the creation of live objects and their manipulation. It has
a class called student having three constructor functions for initializing static or dynamic objects. The
information required for initializing some dynamic objects is passed as parameters and some are initial-
ized with information read at runtime.

// student3.cpp: manipulation of live objects
#include <iostream.h>

#include <string.h>

class student

{

private:

int roll_nc; // roll number

char *name; // name of a student
public:

// initializing data members using constructors
student () // constructor 0
{
char flag, str[50]);
cout << "Do you want to initialize the object (y/n): *;
cin >> flag;
if(flag == 'y’ || flag == 'Y')
{
cout << "Enter Roll no. of student: *;
cin >> roll_no;

}i

Chapter 12: Dynamic Objects 409

cout << "Enter Name of student: ";
cin >> str;

name = new char[strlen(str)+l 1; // dynamic initialization
strcpy(name, str };
}
else
{
roll_no = 0;
name = NULL;
}
}
student (int roll_no_in) // constructor 1
{
roll_no = roll _no_in;
name = NULL;
}
student (int roll_no_in, char *name_in) // constructor 2
{
roll _no = roll_no_in;
name = new char{ strlen(name_in)+1 1
strcpy(name, name_in };
}
~student ()
{
if (name)
delete name; // release memory allocated to name member
}
void set(int roll_no_in, char *name_in)
{
student (roll_no_in, name_in);
}

// display data members on the console screen
void show()

{

L)

if(roll_no) // if(roll no !'= 0)
cout << "Roll No: " << roll_no << endl;

else

cout << "Roll No: (not initialized)" << endl;
if(name) // if(name != NULL)

cout << "Name: " << name << endl;
else

cout << "Name: (not initialized)" << endl;

void main()

{

student *sl, *s2, *s3, *s4;

sl
s2
s3
sd

new student; // will be initialized during run time by the user
new student; // will be initialized during run time by the user
new student(1); // partially live object

new student(2, "Bhavani®); // fully live object

410 Mastering C++

cout << "Live objects contents..." << endl;
// display contents of all live objects
sl->show() ;
s2->show () ;
s3->show() ;
s4->show() ;
// release the memory allocated to dynamic objects sl, s2, s3, and s4
delete sl;
delete s2;
delete s3;
delete s4;
}

Run

Do you want to initialize the object (y/n): n
Do you want to initialize the object (y/n): ¥y
Enter Roll no. of student: §

Enter Name of student: Rekha

Live objects contents...

Roll No: (not initialized)

Name: (not initialized)

Roll No: 5

Name: Rekha

Roll No: 1

Name: (not initialized)

Roll No: 2

Name: Bhavani

In main (), the statement
student *sl, *s2, *s3, *s4;
creates pointer variables to objects of the class student. The statements
sl
s2 »
create two objects dynamically and store their addresses in the variable s1 and s2 respectively. These
objects are initialized by invoking the default constructor which reads the data entered by the user at
runtime. The statement

new student;
new studer*;

s3 = new student(1);
creates an object and initializes its first data member by invoking the one-argument constructor. The
object s3 is partially initialized object. The statement

s4 = new student(2, "Bhavani");
creates an object named s4 and initializes all its data members by invoking the two-argument construc-
tor. The member function show (} of the class student is invoked for all the objects pointed to by
s1, s2, s3, and s4 to display students' roll number and their name. All the objects created in this
program are destroyed explicitly by using delete operator. The destructor is invoked automatically
for each one of these objects to release the memory allocated to their string data member name. For
instance, the statement,

delete s2;

releases the memory allocated to the object pointed to by s2 and also invokes the destructor to cleanup.

Chapter 12: Dynamic Objects - 411

12.4 Array of Objects

C++ allows the user to create an array of any data type including user-defined data types. Thus, an array
of variables of a class data type can also be defined, and such variables are called an array of objects.
An array of objects is often used to handle a group of objects, which reside contiguously in the\memory.
Consider the following class specification:

class student
{

private:

int roll_no; // roll number

char name([20]; // name of a student
public: '

void setdatal int roll_no_in, char *name_in);
void outdatal();
};
The identifier student is a user-defined data type and can be used to create objects that relate to
students of different courses. The following definition creates an array of objects of the student
class:
student science(10]; // array of science course students
student medicall[5); // array of medical course students
student engg{25]; // array cf engineering course students
The array science contains ten objects, namely science(0], .. ,science[9] of type stu-
dent class, the medical array contains 5 objects and the engg array contains 25 objects.

An array of objects is stored in the memory in the same way as a multidimensional array created at
compile time. The representation of an array of engg objects is shown in Figure 12.5. Note that, only the
memory space for data members of the objects is created; member functions are stored separately and
shared by all the objects of student class.

roll_no

- engg (0]
name
roll_no

engg (1]

name

1
roll_no engg (24]
name

Figure 12.5: Storage for data items in an array of objects

An array of objects behaves similar to any other data-type array. The individual element of an array
of objects is referenced by using its index, and member of an object is accessed using the dot operator.

4i2 Mastering C++

For instance, the statement
engg[i).setdata(10, "Rajkumar");

sets the data members of the i®" element of the array engg. Similarly, the statement
engg[i] .outdata();

will display the data of the i*" element of the array engg[i]. The program studentl . cpp illus-
trates the use of the array of objects.

// studenti.cpp:array of student data type
#include <iostream.h>

#include <string.h>

class student

{
private:
int roll_no; // roll number
char name([20]; // name of a student
public:
// initializing data members
void setdata(int roll_no_in, char *name_in)
{
roll_no = roll_no_in;
strcpy(name, name_in);
}
// display data members on the console screen
void outdata()
{
cout << "Roll No = " << roll_no << endl;
cout << "Name = " << name << endl;
}
};
void main()
{

int i, roll_no, count;
char response, name[20];
student s[10]; // array of 10 objects
count = 0;
for(i = 0; i< 10; i++)
{
cout << "Initialize student object (y/n): *
cin >> response;
if(response == 'y' || response == 'Y')
{
cout << "Enter Roll no. of student: *
cin >> roll_no;
cout << "Enter Name of student: *;
cin >> name;
s[i) .setdata(roll_no, name);
count++;

Chapter 12: Dynamic Objects 413

else
break;

}

cout << "Student details..." << endl;

for(i = 0; i < count; i++)

s[i] .outdatal();

}
Run
Initialize student object (y/n): ¥
Enter Roll no. of student: 1
Enter Name of student: Rajkumar
Initialize student object (y/n): ¥
Enter Roll no. of student: 2
Enter Name of student: Tejaswi
Initialize student object (y/n): ¥
Enter Roll no. of student: 3
Enter Name of student: Savithri
Initialize student object (y/n):
student details. ..
Roll No = 1
Name = Rajkumar
Roll No = 2
Name = Tejaswi
Roll No = 3
Name = Savithri

1=}

In main (), the statement

student s(10];
creates an array of 10 possible objects of the student class. It should be clearly understood that an
array of objects allow better organization of the program instead of having 10 different variables and
each one of them is the object of the student class. Note that the subscripted notation used for object
is similar to the manner in which arrays of other data types are usually handled. The statement

s[i] .outdatal();
executes the outdata () member function in the student class for the it" object of the s array.

12.5 Array of Pointers to Objects

An array of pointers to objects is often used to handle a group of objects, which need not necessarily
reside contiguously in memory, as in the case of a static array of objects. This approach is more flexible,
in comparison with placing the objects themselves in an array, because objects could be dynamically
created as and when they are required. The syntax for defining an array of pointers to objects is the
same as any of the fundamental types. The program student2 . cpp illustrates the concept of array
of pointers to objects.

/ / student2.cpp: array of pointers to student
#include <iostream.h>
#include <string.h>

414 Mastering C++

class student

{
private:
int roll_no; // roll number
char name[20]; // name of a student
public:
// initializing data members
void setdata(int roll_no_in, char *name_in)
()
roll_no = roll_no_in;
- strcpy(name, name:_in);
}
// display data members on the console screen
void outdata()
{
cout << "Roll No = " << roll_no << endl;
cout << "Name = " << name << endl;
}
}i

void main()
{
int i, roll_no, count;
char response, name{20];
student * s{10]; // array of pointers to objects
count = 0;
for(i =20; 1 < 10; i++)
{
cout << "Create student object (y/n): *;
cin >> response;
if(response == 'y' || response == 'Y')
{
cout << "Enter Roll no. of student: ";
cin >> roll_no;
cout << "Enter Name of student: *;
cin >> name;
s[i] = new student; // dynamically creating objects
s(i)->setdata({ roll_no, name.);
count++;
}
else
break;
}
cout << "Student details..." << endl;
for(i = 0; i < count; i++)
s[i]->outdata();

for(i = 0; i < count; i++) // release memory allocated to all
delete s[i];
}
ﬂun

Cfeate student object (y/n): y

objects

Enter Roll no. of student: 1
Enter Name of student: Rajkumar
Create student object (y/n): X
Enter Roll no. of student: 2
Enter Name of student: Tejaswi
Create student object (y/n): ¥
Enter Roll no. of student: 3
Enter Name of student: Savithri
Create student object (y/n): n
Student details...

Roll No =1
Name = Rajkumar
Roll No = 2

Name = Tejaswi
Roll No = 3
Name = Savithri

In main (), the statement
student * s[lO];

creates an array of pointers of 10 possible student objects.
space required for an array of 10 pointers t
of 10 student objects. Hence, the studen

are needed (see Figure 12.6).

student*s(10)

Chapter 12: Dynamic Objects

s[0] new student;

s(0] —p 1
s[1] new student;

s(1] Rajkumar
s[2]
s3]}
s[4] L 5
s(5] Tejaswi-
s[6]
s[7] s[2] = new student;
s(8] 3
s09) Savithri

415

It should be clearly understood that the
o student objects is certainly less than the space for an array
t class objects are created by the program as and when they

roll_no

name [20]

roll_no

name [20]

roll_no

name{20]

Figure 12.6: Array of pointers to objects and dynamic binding

Note that the subscripted notation used for obj
of other data types are usually handled. Thus, s [count]is same as

Similarly the statement
s[i]->outdata();

ect pointers is similar to the manner in which arrays
* (s + count) in the program.

416 Mastering C++

executes the outdata () member function in the student class for the it® object of the s array.
Pointers to objects could be effectively used to create and manipulate data structures like linked-lists,
stacks, queues, etc.

12.6 Pointers to Object Members

Whenever an object is created, memory is allocated to it. The data defining the object is held in the
space allocated to it, i.e., the data and member functions of the object reside at specific memory loca-
tions subsequent to the creation of the object. Thus, a pointer to an object member can be obtained by
applying the address-of operator (&) to a fully qualified class member-name (which may be a data item
or amember function). A fully qualified member name is used to refer to a member of a class without any
ambiguity. For instance, the declaration
<class_name>: :<member_name>;

is a fully qualified declaration naming the member <member_name> of the class <class_name>.
Preceding the above member reference with an & operator causes the address of the member
<member_name> of the class <class_name> to be returned.

Members of a class can be accessed using either pointer to an object, or pointer to members itself.
The address of a member can be obtained by using the address operator (&) to a fully qualified
member name of a class similar to variables. A pointer to class members is declared using the operator

: + * with the class name. The syntax for defining the pointer to class members is shown in Figure 12.7.

T
pointer to a member of a class

V

DataType ClassName :: *PointerName ;

address of a member of a class

A
PointerName = &ClassName :: Member

Figure 12.7: Syntax of defining pointer to class members

A variable of type pointer to a member of class X can be defined as follows:

DataType X::*ptr_name;
The ptr_name is a pointer to a data member of class X, which is of type DataType. A pointer to a
member function can be defined as follows:

ReturnType (X::* fn_ptr) (arguments);
It defines a pointer variable £n_ptr as a pointer to a member function of the class X which takes one
or more arguments as specified by arguments and returns a value of type ReturnType. Consider
the following specification of the class X :

class X

{
private:
int y;

Chapter 12: Dynamic Objects 417

public:
int a;
public:
int b:
int init(int z);
}i
A pointer to the member a or b is defined as follows:
int X::*ip;
The address of the member a can be assigned by
ip = &X::a;
Similarly, the address of the member b can be assigned by
ip = &X::b;
The address of the member a can also be assigned to a pointer during its definition as
int X::*ip = &X::a;

The pointer variable ip, acts like the class member so that it can be invoked with a class object. In the
above statement, the phrase X: :* implies pointer-to-member of the class X. The phrase &X::a
implies address of the member a of the class X.
The address of the private member y cannot be assigned by using the statement
ip = &X::y;
Private members have the same access control privilege even with a pointer to the class members.
Normal pointer variable cannot be used as a pointer to the class member. Hence, the statement
int *ptr = &X::a;
is invalid; The pointer and the variable have meaning only when they are associated with the class to
which they belong. The scope resolution operator must be applied to both the pointer and the member.

Like pointers to data members, pointers to member functions can also be defined and invoked using
the dereferencing operators. A pointer to the member function init () is defined as follows:
int (X::*init_ptr) (int);
The address of the member init () can be assigned by
init_ptr = &X::init;
to the pointer variable init_ptr. The different methods of accessing class members is shown in
Figure 12.8.

Access through Objects

C++ provides operator, . * (dot-star) exclusively for use with pointers to members called member
dereferencing operator. This operator is used to access class members using a pointer to members and
it must be used with the objects of the class. The following statement,

X objl;
creates the object obj 1 of the class X. Using the pointer variable ip, the following statement accesses
the data member variable.

objl.*ip = 20; // if ip is bound to a, it is same as the objl.a;

cout << objl.*ip;

int k = objl.*ip;

418 Mastering C++

Member functions can also be accessed using the operator . * as follows:

(objl.*init_ptr) (5); // same as the objl.init() call
int k = (objl.*init_ptr)(5);

The general format can be deduced to the following:
(object-name. *pointer-to-member-function) (arguments) ;

In such calls, the parentheses must be used explicitly, since the precedence of () is higher than the
dereferencing .* operator.

ObjectName . Member

(a) Common way of accessing a class member

pointer to class member

1/

ObjectName *PointerToMember;

(b) Accessing class member through its pointer

pointer to object

~N

PointerToObject -> Member;

(c) Accessing class member through the pointer to object

pointer to object

pointer to class member

l/

PointerToObject -> *PointerToMember;

(d) Accessing class member through the pointer to object and member

Figure 12.8: Different ways of accessing class members

Access through Object Pointers

C++ provides another operator ->* for use exclusively with pointers to members called member
dereferencing operator. This operator is used to access a member using a pointer to it with pointer to
the object. The following statement
X objl;
X *pobj;
create the object ob3j1 of the class X and the pointer pobj to the objects of the class X. Using the
pointer variable ip (defined earlier), the following statements access the member variables.
pobj->*ip = 20; // accesses a if ip is bound to data member a
cout << pobj->*ip; // display data member a
int k = pobj->*ip; // k = data member a's contents

Chapter 12: Dynamic Objects 419

Member functions can also be accessed using the operator ->* as follows.

(pobj.*init_ptr) (5);
int k = (pobj->*init_ptr) (5);

The general format can be deduced to the following

(pointer-to-object—>*pointer—to—member—function)(arguments);

In such calls, the parentheses must be used explicitly, since the precedence of () is higher than the
dereferencing ->* operator. The program ptrmemb. cpp illustrates the concept of a pointer to class
members.

// ptrmemb.cpp: pointer to class members
#include <iostream.h>

class X
{
private:
int y; // through pointer it cannot be accessed
public: // all public members can be accessed through pointers
int a;
int b;
int init(int z)
{
a = z;
return z;
}
Yi
void main ()
{
X obj;
int X::*ip; // pointer to data member
ip = &X::a; // address of data member a is assigned to pointer
// access through object
obj.*ip = 10;
cout << "a in obj, after obj.*ip = 10 is " << obj.*ip << endl;
X *pobj; // pointer to object of the class X
pobj = &okj;
// access through object pointer
pobj->*ip = 10;
cout << "a in obj, after pobj->*ip = 10 is " << pobj->*ip << -endl;
int (X::*ptr_init) (int); // pointer to member function
ptr_init = &X::init; // pointer to member function init()
// access through object
(obj.*ptr_init) (5);
cout << "a in obj, after (obj.*ptr_init)(5) = " << obj.a << endl;
// access through object pointer
(pobj->*ptr_init) (5);
cout << "a in obj, after (pobj->*ptr_init) (5) = " << obj.a << endl;
}
Run
a in obj, after obj.*ip = 10 is 10

420 Mastering C++

a in obj, after pobj->*ip = 10 is 10
a in obj, after (obj.*ptr_init)(5) =5
a in obj, after (pobj->*ptr_init)(5) =5

Access Through Friend Functions

The friend functions can access private data members of a class although it is not in the scope of the
class. Similarly, members of any access privilege can be accessed using pointers to members. Both the
dereferencing operators .* and ~>* can be used to access class members. The program friend.cpp

illustrates the concept of accessing class members through pointers from friend functions.

/7 friend.cpp: friend functions and pointer to members
#include <iostream.h>
class X

{

}i

private:
int a;
int b;

public:
X0)

a=Db=0;
void SetMembers(int al, int bl)

a = al;
b = bl;

friend int sum(X x);

int sum(X objx)

{

}

int X::*pa = &X::a; // pointer to member a
int X::*pb = &X::b; // pointer to member b
X *pobjx = &objx; // pointer to object of the class X

int result;

// the member a is accessed through objects

// and the member b is accessed through object pointer
result = objx.*pa + pobjx->*pb; // sum a and b;
return result;

void main()

{

X objx:;
void (X::*pfunc) (int, int);
pfunc = &X::SetMembers;

(objx.*pfunc) (5, 6); // equivalent to objx.SetMembers (5, 6)
cout << *Sum = " << sum{ objx) << endl;
X *pobjx; // pointer to object of the class X

pobjx = &objx;
(pobjx->*pfunc) (7, 8); // equivalent to pobjx->SetMembers (5, 6)

Chapter 12: Dynamic Objects 421

cout << "Sum = " << sum(objx) << endl;
}
Run
Sum = 11
Sum = 15

12.7 Function set_new_handler()

The C++ run-time system makes sure that when memory allocation fails, an error function is activated.
By default, this function returns the value 0 to the caller of new, so that the pointer which is assigned
by new is set to zero. The error function can be redefined, but it must comply with a few prerequisites,
which are, unfortunately, compiler-dependent.

The function set_new_handler (). sets the function to be called when a request for memory
allocation through the operator new () function cannot be satisfied. Ivs prototype is
void (* set_new_handler (void (* my_handler) ())) (});
If new () cannot allocate the requested memory, it invokes the handler set by set_new_handler().
The user defined function, my_handler () should specify the actions to be taken when new ()
cannot satisfy a request for memory allocation.

Ifmy_handler () returns,new () will again attempt to satisfy the request. Ideally, my_handler
would release the memory and return. new () would then be able to satisfy the request and the program
would continue. However, if my_handler () cannot provide memory for new(), my_handler
must terminate the program. Otherwise, an infinite loop will be created.

The default handler is reset by set_new_handler (0). Preferably, it is advisable to overload the
new () to take appropriate actions as per the application requirement.

The function set_new_handler returns the old handler, if it has been defined. By default, no
handler is installed. The user-defined argument function, my_handler, should not return a value.

The programmemhnd . cpp demonstrates the implementation of user-defined function (in Borland
C++) to handle memory resource shortage error.

/7 memhnd.cpp: user-defined handler to handle out-of-memory issue
#include <iostream.h>
#include <new.h>
#include <process.h>
void out_of_memory ()
{
cout << "Memory exhausted, cannot allocate";
exit(1); // terminate the program
}
void main ()
{
int *ip; .
long total_allocated = OL;
// install error function
set_new_handler (out_of_memory);

422 Mastering C++

// eat up all memory

cout << "Ok, allocating.." << endl;
while (1)

r

ip = new int [100];
total_allocated += 100L;
cout << "Now got a total of " << total_allocated << " bytes" << endl;

}

BRun

Ok, allocating..

Now got a total of 100 bytes
Now got a total of 200 bytes

Now got a total of 29900 bytes
Memory exhausted, cannot allocate

The advantage of an allocation error function lies in the fact that once installed, new can be used
without bothering whether the memory allocation has succeeded or not: upon failure, the error function
is automatically invoked and the program terminates. It is a good practice to install a new handler in each
C++ program, even when the actual code of the program does not allocate memory. Memory allocation
can also fail in code which is not directly visible to the programmer, e.g., when streams are used or when
strings are duplicated by low-level functions.

Most often, even standard C functions, which allocate memory such as strdup (), malloc(),
realloc (), etc., trigger (invoke) the new handler when the memory allocation fails. That is, once a
new handler is installed, such functions can be used in a C++ program without testing for errors.
However, compilers exit where the C functions do not trigger the new handler.

12.8 this Pointer

It is observed that a member function of a given class is always invoked in the context of some object
of the class; there is always an implicit substrate (implicitly defined) for the function to act on. C++ has
a keyword this to address this substrate (it is not available in the static member functions) . The
keyword this is a pointer variable, which always contains the address of the object in question. The
this pointer is implicitly defined in each member function (whether public or private); therefore, it
appears as if each member function of the class Test contains the following declaration:
extern Test *this;

Every member function of a class is born with a pointer called this, which points to the object with
which the member funciion is associated.

Thus, member function of every object has access to a pointer named this, which points to the
object itself. When a member function is invoked, it comes into existence with the value of this setto
the address of the object for which it is called. The this pointer can be treated like any other pointer
to an object. Using athis pointer, any member function can find out the address of the object of which
it is a member. Method of accessing a member of a class from within a class using this pointer is
shown in Figure 12.9.

Chapter 12: Dynamic Objects 423

class Test
{ . refers to data member
int a; &———
public:
funcl () ¢—————

{ refers to member function

}
func2()

(__———*

this -> a; or a
this -> funcl() or funcl()

A R

Figure 12.9: Accessing class members using this pointer

The this pointer can also be used to access the data in the object it points to. The program
this.cpp illustrates the working of this pointer.

/ / this.cpp:accessing data members through this pointer
#include <iostream.h>
class Test

{
private:
int a;
public:
void setdata(int init_a)
{
a = init_a; // normal way to set data
cout<<"Address of my object, this in setdata(): "<< this <<endl;
this->a = init_a; // another way to set data
}
void showdata ()
{
// normal way to show data
cout << "Data accessed in normal way: " << a << endi;
cout<<"Address of my object, this in showdata(): "<< this<<endl;
// data access through this pointer
cout << "Data accessed through this->a: " << this->a;
}
}i
void main ()
{
Test my;
my.setdata(25);
my .showdata() ;
}
Run
Address of my object, this in setdata(): Oxfff2

Data accessed in normal way: 25

424 Mastering C++

Address of my object, this in showdata(): Oxfff2
Data accessed through this->a: 25

A more practical use of this pointer is in returning values from member functions. When an object
is local to the function, the object will be destroyed when the function terminates. It necessitates the
need for a more permanent object while returning it by reference. Consider the member function add ()
of the class complex:

complex complex::add(complex c2)

{

real = real + c2.real; // add real parts
imag = imag + c2.imag; // add imaginary parts
return complex(real, imag); // create an object and return

}
It adds the object c2 to a default object and returns the updated default object by explicitly creating a
nameless object using the statement
return complex(real, imag);
It can be replaced by the statement
return *this;
without the loss of functionality. The modified definition of add () appears as follows:
complex complex::add(complex c2)

{
real = real + c2.real; // add real parts
imag = imag + c2.imag; // add imaginary parts
return *this;
}
Since this is a pointer to the object of which the function is a member, *this naturally refers to the
object pointed to by this pointer. The statement
return *this;
returns this object by value.
For a given class X, in each one of its member functions, the pointer this is implicitly declared as
X *const this;
and initialized to point to the object for which the member function is invoked. As the pointer this is
declared as * const, it cannot be changed for a particular object ensuring that the access to the object
is not lost, even accidentally. However, the value of this is different for every individual object
declared or created in the program. The compiler treats this as a keyword (reserved word) as a result
of which it cannot be explicitly declared. Further, it (the compiler) also places a restriction which
prevents the keyword this from being used outside a class member function body.

12.9 Self-Referential Classes

Many of the frequently used dynamic data structures like stacks, queues, linked-lists, etc., use self-
referential members. Classes can contain one or more members which are pointers to other objects of the
same class. This pointer holds an address of the next object in a data structure. Such a feature is
essential for implementing dynamic data structures such as linked lists, stack, trees, etc.

Chapter 12: Dynamic Objects 425

Linked List
Alﬁthaﬂngnmk,whmhisapmnwru)menenlnﬁeh1ahmiscmwdlmkuihm;Thepwmﬁm
representation of a linked list having pointer to the next object of the same class is shown in Figure
12.10. The program listed in1ist . cpp implements a linked list of integers using such a self-referential
daﬁ.Themogmnnmesapdnwrcmhdthispdnwn

class linked list

first

= Gkl —kld—1A

*next

Figure 12.10: Linked list with self-referential classes

;7 list.epp: Linked list having self reference
#include <iostream.h>

#include <process.h>

// linked list class

class list

{

private:
int data; // data of a node
list *next; // pointer to next node
public:
list ()
{
data = 0;
next = NULL;
}
list (int dat)
{
data = dat;
next = NULL;
}
~list () {}
int get() { return data;)}
void insert(list *node); // Inserts new node at list
friend void display(list *); // Display list

Y

// Inserts node. If list empty the first node is created else the
// new node is inserted at the end of a list

void list::insert(list *node)

{
list *last = this: // this node pointer to catch last node
while(last->next) // if node-next != NULL, it is not last node
last = last->next;
last->next = noge; // make last node point to new node

}
// Displays the doubly linked l1ist in both forward and reverse order by

// making use of the series of next and prev pointers.

426

Mastering C++

void display(list *first)

{

list *traverse;

cout << "List traversal yields: *;

// scan for all the elements

for(traverse = first; traverse; traverse
cout << traverse->data << ", *;

cout << endl;

}

void main(void)

{

int choice, data;
list *first = NULL; // initially points to NULL

list *node;

while(1)
{
cout << "Linked List..." << endl;
cout << "l.Insert" << endl;
cout << "2.Display" << endl;
cout << "3.Quit" << endl;
cout << "Enter Choice: *;

~

}
Run

cin >> choice;
switch (choice)

{
case 1:
cout << "Enter Data: ";
cin >> data;
node = new list(data);
if(first == NULL)
first = node;
else
first->insert(node);
break;
case 2:
display(first);
break; // Display list.
case 3:
exit(1);
default:
cout << "Bad option selected" <<
continue;
}

Linked List...

1.Inse

rt

2.Display

3.Quit

= traverse->next

// pointer to new node to be created

endl;

Chapter 12: Dynamic Objects 427

Enter Choice: 1

Enter Data: 2

Linked List..

1.Insert

2.Display

3.Quit

Enter Choice: 2

List traversal yields: 2,
Linked List...
1.Insert
2.Display
3.Quit

Enter Choice:
Enter Data: 3
Linked List. ..
1.Insert
2.Display
3.Quit

Enter Choice:
Enter Data: 4
Linked List...
1.Insert

2 .Display
3.Quit

Enter Choice: 2

List traversal yields: 2, 3, 4,
Linked List. ..

1l.Insert

2.Display

3.Quit

Enter Choice: 3

=

=

The use of a self-referential class is inevitable in the above program, since each node in the stack has
a pointer to another node of its own type, which is its predecessor (in the case of the stack).

Several problems whose solutions are based on the use of data structures like trees, graphs and lists
make extensive use of self-referential class.

Doubly Linked List

Using this pointer when referring to a member of its own class is often unnecessary, as illustrated
earlier; the major use of the this pointer is for writing member functions that manipulate pointers
directiy. The doubly linked list has two pointer nodes: one pointing to the next node in the list and
another pointing to the previous node in the list. The pictorial representation of a doubly linked list is
shown in Figure 12.11.

The program d11 . cpp makes use of the data structure, doubly linked list, illustrating the typical
use of the this peinter at relevant points. The this pointer is particularly used as a pointer to the first
node while traversing through the entire list.

428 Mastering C++

class doubly
linked list first

aaca =] [

*prev

*next

Figure 12.11: Doubly linked list representation

/ / dil.cpp: doubly linked list
#include <iostream.h>
#include <process.h>
class dll // doubly linked list class
{
private:
int data; // data of a node
dll *prev; // pointer to previous node
dll *next; // pointer to next node
public:
dll()
{
data = 0;
prev = next = NULL;
}
dll(int data_in)
{

data data_in;
prev = next = NULL;
}
~d1l1l()
{

cout << "->" << data;

}

int get() { return data; }

A4

void insert (dll *node); // Inserts new node at list

friend void display(dll *); // Display list
void FreeAllNodes () ;
};

// Inserts node. If list empty the first node is created else the
// new node is inserted immediately after the first node.

void-dll::insert(d11 *node)

{
dll *last;
// £ind out last node. this points to first node

* for(last = this; last->next; last = last->next };
// insert new node at the end of list

Chapter 12: Dynamic Objects

node->prev = last:
node->next = last->next;

last->next = node;

void dll::FreeAllNodes ()

IS

}

cout << "Freeing the node with data: ";
// this points to first node, use it

for(dll *first = this; first; first = first->next)

delete first;

to release all the nodes

429

// Displays the doubly linked list in both forward and reverse order making
// use of the series of next and prev pointers.
void display(dll *first)

{

}

dll *traverse = first;

if(traverse == NULL)

{

cout << "Nothing to display !" << endl; // along the list.

return;
}
else
{

}

cout << "Processing with forward -> pointer: *;

// scan for all the elements in forward direction

for(;traverse->next; traverse = traverse->next)
cout << "->" << traverse->data;

// display last element

cout << "->" << traverse->data << endl;

cout << "Processing with backward <- pointer: *;

// scan for all the elements in reverse direction

for(;traverse->prev; traverse = traverse->prev)

cout << "->" << traverse->data;
// display first element
cout << "->" << traverse->data << endl;

dll * InsertNode(dll *first, int data)

{

}

dll *node;
node = new dll(data);
if(first == NULL)

first = node;

else

first->insert(node);

return first;

void main{(void)

r

int choice, data;

430 Mastering C++

dll *first = NULL; // initially points to NULL
cout << "Double Linked List Manipulation..." << endl;
while(1)
{
cout << "Enter Choice ([1l] Insert, [2] Display, [3) Quit): ";
cin >> choice;
switch (choice)
{
case 1:
cout << "Enter Data: "“;
cin >> data;
first = Inserthde(first, data);
break;
case 2:
display(first);
break; // Display list.

case 3:
first->FreeAllNodes(); // release all nodes
exit(1);
wuafault:
cout << "Bad option selected" << endl;
continue;
}
}
}
Run

Double Linked List Manipulation...

Enter Choice ([1] Insert, [2] Display, [3] Quit): 1
Enter Data: 3

Enter Choice ([1] Insert, [2] Display, [3] Quit): 2
Processing with forward -> pointer: ->3

Processing with backward <- pointer: ->3

Enter Choice ([1l] Insert, [2] Display, (3] Quit): 1
Enter Data: 7

Enter Choice ([1l] Insert, [2] Display, [3] Quit): 2
Processing with forward -> pointer: ->3->7
Processing with backward <- pointer: ->7->3

Enter Choice ([l1] Insert, {2] Display, [3] Quit): 1
Enter Data: 5

Entexr Choice ([1] Insert, [2] Display, [3] Quit): 2

Processing with forward -> pointer: ->3->7->5
Processing with backward <- pointer: ->5->7->3
Enter Choice ([1] Iusert, [2] Display, [3] Quit): Q
Bacl option selected
Enter Choice ([1] Insert, [2] Display, [3] Quit): 3
Freeing the node with data: ->3->7->5
Besides handling dynamic data structures, the this pointer finds extensive application in the
following contexts:

* Member functions returning pointers to their respective objects.

Chapter 12: Dynamic Objects 431

+ Overloaded operators which return object values by reference.
+ Virtual functions wherein decisions, as to which version of an overloaded function is to be executed,
is taken only during runtime (late binding).

12.10 Guidelines for Passing Object Parameters

The parameters to normal functions or member functions, of a class can be passed either by value,
pointer, or reference. However, passing some objects by pointers or reference is much efficient when
compared to passing by vatue even though modification in a callee need not be reflected in the caller. A
few guidelines that help in taking decision on choosing appropriate parameter passing scheme are the
following:

[1] If a function does not modify an argument, which is a built-in type or a "small" user-defined type
(class objects), pass arguments by value. The meaning of "small" refers to data-type, which require
few bytes to represent its objects and it is system dependent.

[2] If a function modifies an argument, which is a built-in type, pass arguments by a pointer. It makes
processing of data explicit to anyone reading the code, which modifies built-in type variables.

[3] If a function modifies or does not modify a "large" user-defined type, pass arguments by reference.
Any function, which modifies private data (and hence protected) of an object must either be a
member function, or a friend function. This is justifiable, since the "class" has control over the
functions which modify class’s private data. In this case, just because the address of an object is
handed over to a function does not mean the function can secretly modify the private data of an
object. As far as object data members are concerned, it is very clear and straight forward to answer
“who has permission to modify this object ?" Hence, it is advisable to pass reference to an object
instead of value or a pointer.

Review Questions

12.1 What is the difference between dynamic memory allocation and dynamic objects ?
12.2 Justify the need of object cleanup and initialization facility for creating live objects
12.3 Explain why C++ is treated as the middle ground between static and dynamic binding languages.
12.4 What is the difference between stack based and heap-based objects ?
12.5 What is dereferencing of objects ? Write a program for illustrating the use of object references.
12.6 What are self-referential classes ? Write a program to create an ordered linked list.
12.7 What are live objects ? Write a program to illustrate live objects supporting different ways of

creating them. Will an object created using new operator occupy more space than necessary ?
12.8 Write a program to access members of a student class using pointer to object members.
12.9 Justify the need for "allowing pointers to class members accessing private members of a class”
12.10 Explain how memory allocation failure can be handled in C++ 2.
12.11 Whatis this pointer ? What is your reaction to the statement:

delete this;
Write a program demonstrating the use of this pointer.

12.12 Write an interactive program for creating a doubly linked list. The program must support ordered
insertion and deletion of a node.

13

Operator Overloading

13.1 Introduction

The operators such as +, -, +=, >, >>, etc., are designed to operate only on standard data types in
structured programming languages such as C. The + operator can be used to perform the addition
operation on integer, floating-point, or mixed data types as indicated in the expression (a+b). In this
expression, the data type of the operands a and b on which the + operator is operating, is not men-
tioned explicitly. In such cases, the compiler implicitly selects suitable addition operation (integer,
floating-point, double, etc.,) depending on the data type of operands without any assistance from the
programmer. Consider the following statements:

int a, b, c¢;

float x, y, z;

c = a + b; // 1: integer addition and assignment
Z =X +Y; // 2: floating-point addition and assignment
X =a + b; // 3: integer addition apd floating point assignment

The operators = and + behave quite differently in the above statements: the first statement does integer
addition and assigns the result to c, the second performs floating-point addition and assigns the result
to z, and the last performs integer addition and assigns the result to the floating-point variable x. It
indicates that, the + operator is overloaded implicitly to operate on operands of any standard data type
supported by the language. Unlike C, in C++, such operators can also be overloaded explicitly to
operate on operands of user-defined data types. For instance, the statement

c3 = AddComplex(cl, c2);
performs the addition of operands c1 and c¢2 belonging to the user defined data type and assigns the
result to 3 (which is also operand of the user defined data type). In C++, by overloading the + operator,
the above statement can be changed to an easily readable form:

c3 = cl + c2;
It tries to make the user-defined data types behave in a manner similar (and have the same look and feel)
to the built-in data types, thereby allowing the user to redefine the language itself. Operator overload-
ing, thus allows to provide additional meaning to operators such as +,*, >=,+=.etc., when they are
applied to user defined data types. It allows the user to program (develop solution to) the problems as
perceived in the real world.

The operator overloading feature of C++ is one of the methods of realizing polymorphism. The word
polymorphism is derived from the Greek words poly and morphism (polymorphism = poly + morphism).
Here, poly refers to many or multiple and morphism refers to actions, i.e., performing many actions with
asingle operator. As stated earlier, the + operator performs integer addition if the operands are of integer
type and floating point addition if the operands are of real type.

Chapter 13: Operator Overloading 433

The concept of operator overloading can also be applied to data conversion. C++ offers automatic
conversion of primitive data types. For example, in the statement x=a+b, the compiler implicitly con-
verts the integer result to floating-point representation and then assigns to the float variable x. But
the conversion of user defined data types requires some effort on the part of the programmer. Thus,
operator overloading concepts are applied to the following two principle areas:

+ Extending capability of operators to operate on user defined data.
« Data conversion.

Operator overloading extends the semantics of an operator without changing its syntax. The gram-
matical rules defined by C++ that govern its use such as the number of operands, precedence, and
associativity of the operator remain the same for overloaded operators. Therefore, it should be remem-
bered that the overloaded operator should not change its original meaning. However, semantics (mean-
ing) can be changed, but it is advisable to retain the predefined logical meaning.

13.2 Overloadable Operators

C++ provides a wide variety of operators to perform operations on various operands. The operators are
classified into unary and binary operators based on the number of arguments on which they operate.
C++ allows almost all operators to be overloaded in which case atleast one operand must be an instance
of a class (object). It allows overloading of the operators listed in Table 13.1.

The precedence relation of overloadable operators and their expression syntax remains the same
even after overloading. Even if there is a provision to change the operator precedence or the expression
syntax, it does not offer any advantage. For instance, it is improper to define a unary division (/) ora
binary complement (~), since the change of precedence or syntax leads to ambiguity. For example,
defining an operator ** to represent exponentiatior. as in the case of Fortran language, appears to be
obvious, however, interpretation of the expression a* *b, leads to confusion; whether to interpret it as
a* (*b) or (a)** (b), because, C++ already interprets itas a* (*b).

Operator Category Operators
Arithmetic +, 0=, % /0%
Bit-wise & |.o~0"

Logical &&, ||, !

Relational >, <, ==, l=, <=, >=
Assignment or Initialization =

Arithmetic Assignment +=, -=, *=, /=, %=, &=, |=, 7=
Shift <<, >>, <<=, >>=
Unary +, --

Subscripting (]

Function Call]

Dereferencing ->

Unary Sign Prefix -

Allocate and Free new, delete

Table 13.1: C++ overloadable operators

434 Mastering C++

13.3 Unary Operator Overloading

Consider an example of class Index which keeps track of the index value. The program index1 . cpp
having class members to maintain the index value is listed below:

// index1.cpp: Index class with functions to keep track of index value
#include <iostream.h>

class Index

{

private:
int value; // Index Value
public:
Index () // No argument constructor

{
value = 0;
}
int GetIndex() // Index Access
{
return value;
}
void NextIndex() // Advance Index
{
value = value + 1;
}
1i
void main()
{
Index idxl, idx2; // idxl and idx2 are objects of Index class
// Display index values
cout << "\nIndexl = " << idxl.GetIndex();
cout << "\nIndex2 = * << idx2.GetIndex();
// Advance Index objects
idx1l.NextIndex () ;
idx2.NextIndex();
idx2.NextIndex() ;
// Display index values
cout << "\nIndexl = " << idx1l.GetIndex();
cout << "\nIndex2 = " << idx2.GetIndex();
}

Run

Indexl
Index2
Indexl
Index2

H
N = OO

The function NextIndex () advances (increments) the index value. Instead of using such func-
tions, the operators like ++ (increment operator) can be used to perform the same job. It enhances the
program readability without the loss of functionality. A new version of the class program index1 . cpp,
is rewritten using overloaded increment operator. The program index2 . cpp illustrates overloading
of ++ operator.

Chapter 13: Operator Overloading 435

// index2.cpp: Index class with operator overloading
#include <iostream.h>
class Index

{
private:
int value; // Index Value
public:
Index () // No argument constructor
{
value = 0;
}
int GetIndex() // Index Access
{
return value;
}
void operator ++() // prefix or postfix increment operator
{
value = value + 1; // value++;
}
}i
void main()
{
Index idxl, 1dx2; // idxl and idx2 are objects of Index class
// Display index values
cout << "\nIndexl = " << idx1l.GetIndex();
cout << "\nIndex2 = " << idx2.GetIndex () ;
// Bdvance Index objects with ++ operators
++idx1; // equivalent to idx1l.operator++();
idx2++;
idx2++;
cout << "\nIndexl = " << idx1.GetIndex();
cout << "\nIndex2 = " << idx2.GetIndex();
}
Run
Indexl = 0
Index2 = 0
Indexl = 1
Index2 = 2

In main (), the statements
++idx1; // equivalent to idxl.operator++();
idx2++;

invoke the overloaded ++ operator member function defined in the class Index:

void operator ++() // prefix or postfix increment operator

The name of this overloaded function is ++. The word operator is a keyword and is preceded by the
return type void. The operator to be overloaded is written immediately after the keyword operator.
This declarator informs the compiler to invoke the overloaded operator function ++ whenever the unary
increment operator is prefixed or postfixed to an object of the Index class.

436 Mastering C++

The variables idx1 and idx2 are the objects of the class Index. The index value is advanced by
using statements such as ++idx1; idx2++; instead of explicitly invoking the miember function
NextIndex () as in the earlier program. The operator is applied to objects of the Index class. Yet.
operator function ++ takes no arguments. It increments the data member value of the Index class’s
objects. Figure 13.1 shows the Index class representation and invocation of its member functions
when they are accessed implicitly (constructor function) or explicitly (other members).

Instances of the class Index

Client program

Index () <
(constructor)

r"x

private member
variables

Index idx1,idx2;

_{idxl.GetIndex();
idx2.GetIndex () ;

(szieniur)

() xspurien

int value; ++ idx1;

/{idx2++;

—

void operator++()

Figure 13.1: Index class and ++ operator overloading

13.4 operator Keyword

The keyword operator facilitates overloading of the C++ operators. The general format of operator
overloading is shown in Figure 13.2. The keyword operator indicates that the operator symbol
following it, is the C++ operator to be overloaded to operate on members of its class. The operator
overloaded in a class is known as overloaded operator function.
Function teturn type: primitive, void, or user defined
Keyword
— Operator to be overloaded (see Table 13.1)

Arguments to Operator
Function

—_— —— —————— I
ReturnType operator OperatorSymbol ([argl, [arg2]])

// body of Operator function

Figure 13.2: Syntax of operator overloading

Chapter 13: Operator Overioading 437

Overloading without explicit arguments to an operator function is known as unary operator over-
loading-and overloading with a single explicit argument is known as binary operator overloading.
However, with friend functions, unary operators take one explicit argument and binary operators take
two explicit arguments. The syntax of overloading the unary operator is shown in Figure 13.3.

—» Function return type: primitive, void, or user defined

Keyword
Operator to be overloaded

l——' No explicit arguments
e —e e—— e

ReturnType operator OperatorSymbol ()
{

// body of Operator function

Figure 13.3: Syntax for overloading unary operator

The following examples illustrate the overloading of unary operators:

¢y Index operator +();
(¥)) int operator -();
€)) void operator ++();
4 void operator --();
®) int operator *();

Similar to other member functions of a class, an overloaded operator member function can be either
defined within the body of a class or outside the body of a class. The following class specification
defines an overloaded operator member function within the body of a class:

class MyClass
{
// class data or function stuff
int operator++() // member function definition
{
// body of a function
}
}:

A skeleton of the same class having the operator member function definition outside its body is as

follows:

class MyClass
{

// class data or function stuff
int operator ++(); // prototype declaration
Y :
// overloaded member function definition
int MyClass: :operator++()
{
// body of a function

}

438 Mastering C++

The process of operator overloading generally involves the following steps:

.1. Declare a class (that defines the data type) whose objects are to be manipulated using operators.

2. Declare the operator function, in the public part of the class. It can be either a normal member function
or a friend function.

3. Define the operator function either within the body of a class or outside the body of the class
(however, the function prototype must exist inside the class body).

The syntax for invoking the overloaded unary operator function is as follows:

object operand
operator object

The-first syntax can be used to invoke a prefix operator function, for instance, ++idx1, and the second
syntax can be used to invoke a postfix operator function, for instance, idx1++.

The syntax for invoking the overloaded binary operator function is as follows:
objectl operator object2

For instance, the expression idx1+idx2 invokes the overloaded member function + of the idx1
object's class by passing idx2 as the argument. Note that, in an expression invoking the binary
operator function, one of the operands must be the object. The above syntax is interpreted as follows:

objectl.operator OperatorSymbol(object2)

Operator Arguments

In main() of index2.cpp program, operator++ () is applied to the object of the class Index
as in the expression idx2++; it can be observed that the operator++ () takes no arguments
explicitly. The execution of the expression idx2++ invokes a member function operator++ ()
defined in the class Index. In this function, the data members of the object idx2 are manipulated.

13.5 Operator Return Values

The operator function in the program index2 . cpp has a subtle defect. An attempt to use an expres-
sion such as
idxl = idx2++;

will lead to a compilation error like Improper Assignment, because the return type of operator++ is
defined as void type. The above assignment statement tries to assign the void return type to the
object (idx1) of the Index class. Such an assignment operation can be permitted after modifying the
return type of the operator++ () member function of the Index class in the index2.cpp pro-
gram. A program with required modifications is listed in index3 . cpp.

// index3.cpp: Index class with overloaded operator returning an object
#include <iostream.h>
class Index

{

private:
int value; // Index Value
public:
Index () // No argument constructor

{
value = 0;

}

Chapter 13: Operator Overloading 439

int GetIndex() // Index Access
{
return value;
}
Index. operator ++() // Returns ‘Index object
(-
Index temp; // temp object
value = value + 1; // update index value
temp.value = value; // initialize temp object
return temp; // return temp object
}
}i _
void main()
{
Index idxl, idx2; // idxl and idx2 are objects of class Index
cout << "\nIndexl = " << idxl.GetIndex(};
cout << "\nIndex2 = " << idx2.GetIndex();
idxl = idx2++; //returned object of idx2++ is assigned to idx1
1dx2++; // returned object of idx2++ is unused
cout << "\nIndexl = " << idx1l.GetIndex () ;
cout << *\nIndex2 = " << idx2.GetIndex();
}
Run
Indexl = 0
Index2 = 0
Indexl =1
Index2 = 2

In main (), the statement

idxl = idx2++; //returned object of idx2++ is assigned to idx1
invokes the overloaded operator furction and assigns the return value to the object idx1 of the class
Index. The operator ++ () function creates a new object of the class Index called temp to be used
as a return valug; it can be assigned to another object. The value data member of the implicit object
idx2 is incremented and then assigned to the temp object which is returned to the caller. The returned
object is assigned to the destination object idx1.

13.6 Nameless Temporary Objects

In the program index3 . cpp, an intermediate (a temporary) object t emp is created as a return object.
A convenient way to return an object is to create a nameless object in the return statement itself. The
program index4 .cpp, illustrates the overloaded operator function returning a nameless object.

// index4.cpp: Index class with overloaded operator returning nameless object
#include <iostream.h>
class Index
{
private:
int value; // Index Value

440 Mastering C++

public:
Index () // No argument constructor
{ value = 0; }
Index(int val) // Constructor with one argument
{
value = val;
}
int GetIndex() // Index Access

{

return value;

}

Index operator ++() // Returns nameless object of class Index

{
value = value + 1;
return Index(value); // calls one-argument constructor

}:
void mair ()

{
Index idx1l, idx2; // idxl and idx2 are the objects of Index

cout << "\nIndexl = * << idxl.GetIndex();

cout << *“\nIndex2 = " << idx2.GetIndex();

idxl = idx2++; // return object idx2++ is assigned to object idxl
idx2++; // return object idx2++ is unused

cout << “\nIndexl = " << idxl.GetIndex();
cout << "\nIndex2 = " << idx2.GetIndex();

Ev

Indexl
Index2
Indexl
Index2

VR O o

In the program index3 . cpp, the statements used to return an object are the following:

Index temp;

value = value + 1;

temp.value = value;

return temp;
In this program, the statements,

value = value + 1;

return Index(value);
perform the same operation as achieved k; the above four statements. It creates a nameless object by
passing an initialization value. To perform this operation, the following parameterized constructor is
added as the constructor member function to the Index class:

Index(int val)
{

values = val;

Chapter 13: Operator Overloading 441

13.7 Limitations of Increment/Decrement Operators

The prefix notation causes a variable (of type standard data type) to be updated before its value is used
in the expression, whereas the postfix notation causes it to be updated after its value is used. However,
the statement (built using user-defined data types and overloaded operator),

idx1l = ++idx2;
has exactly the same effect as the statement

idxl = idx2++;
When ++ and -- operators are overloaded, there is no distinction between the prefix and postfix
overloaded operator function. This problem is circumvented in advanced implementations of C++,
which provides additional syntax to express and distinguish between prefix and postfix overloaded
operator functions. A new syntax to indicate postfix operator overloaded function is:

operator ++{ int)

The program index5.cpp illustrates the invocation of prefix and postfix operator functions. Note
that the old syntax is used to overload prefix operator function.

// index5.cpp: Index class with overloaded prefix and postfix unary operators
#include <iostream.h>
class Index
{
private:
int value; // Index Value

public:
Index () // No argument constructor
{ value = 0; }
Index(int val) // Constructor with one argument
{
value = val;
}
int GetIndex() // Index.Access
{
return value;
}
// Operator overloading for prefix operator
Index operator ++()

{
// Object is qreated with the ++value, hence object is
// created with a new value of 'value' and returned
return Index(++value };

}

// Operator overloading for postfix opefator

Index operator ++(int)

{
// Object is created with the value++, hence object is
// created with old value of 'value' and returned
return Index(value++);

442 Mastering C++

void main ()
{

Index idx1(2), idx2(2),
cout << "\nIndexl = " << idxl.GetIndex();

cout << "\nIndex2 = *

<<

idx3, idx4;

idx2.GetIndex();

idx3 = idxl++; // postfix increment
idx4 = ++idx2; // prefix increment

cout << "\nIndexl
cout << "\nIndex3
cout << "\nIndex2
cout << "\nIndex4

}

Bun

Indexl =
Index2 =
Indexl =
Index3 =
Index2 =
Index4 =

W wNn WD

In the postfix operator ++ (int) function, first a nameless object with the old index value is
created and then, the index value is updated to achieve the intended operation. The compiler will just
make a call to this function for postfix operation, but the responsibility of achieving this rests on the

programmer.

The above discussion on unary plus overloading is also applicable to overloading of unary decre-

<<
<<
<<
<<

idx1l.GetIndex () ;
idx3.GetIndex () ;
idx2.GetIndex () ;
idx4.GetIndex () ;

ment and negation operators. It is illustrated by the program index6 . cpp.

// index6.cpp: Index class with unary operator overloading -, ++

#include <iostream.h>
class Index
{
private:
int value;
public:
Index ()
i value = 0; }
Index(int val)
{
value = val;
}
int GetIndex()
{
return value;
}
Index operator - ()
{

// Index Value

// No argument constructor

// Constructor with one argument

// Index Access

// Negation of Index Value

return Index(-value);

}

, and --

3

Chapter 13: Operator Overloading

Index operator ++() // Prefix increment
{
++value;
return Index(value Y
}
Tndex operator --() // prefix decrement
{
--value;
return Index(value)
}
}i
void main ()
{
Index idxl, idx2;
cout << "\nIndexl = " << idxl.GetIndex(};
cout << "\nIndex2 = " << idx2.GetIndex();
1idx2++;
idxl = -idx2; // negate idx2 and assign to idxl
++1dx2;
--idx2; // prefix decrement
cout << "\nIndexl = " << idxl.GetIndex();
cout << "\nIndex2 = " << idx2 .GetIndex();
}
Run
Indexl = 0
Index2 = 0
Indexl = -1
Index2 = 1

Overloading of unary operator does not necessarily mean that it is overloaded to operate on a
class's object, which has a single data member. Within the body of a overloaded unary operator func-
tion, any amount of data can be manipulated. One of the best example is manipulation of date object
data members. A class called date can have three data members day, month, andyear. To increment
date by one, it may necessitate updation of all the fields on the date class. It depends on the current
values of date class's object data members as illustrated in the program mydate . cpp. It has over-
loaded unary increment operator function to update date object's data members.

// mydate.cpp: overloading ++ operator to increment date
#include <iostream.h>
class date
{
int day:;
int month;
int year;
public:
date()
{
day = 0; month = 0; year = 0;
}

}i

Mastering C++

date(int 4, int m, int y)
{

day = d; month = m; year = y;
}

void read()

{

cout << “Enter date <dd mm yyyy>:

cin >> day >> month >> year;

}
void show()
{
cout << day << “:” << month << “:” << year;
}
int IsLeapYear ()
{
if((year % 4 == 0 && year % 100 !'= 0) || (year % 400 ==
return 1;
else
return 0;
}
int thisMonthMaxDay ()
{

int m[12] = (31, 28, 31, 30, 31,

if(month == 2 && IslLeapYear())

return 29; // February month with leap year will have

else
return m[{month-1];

}

.
’

30, 31, 31, 30,

// unary increment operator overloading

void operator ++()

{
++day;

// adjust all fields of date according to current day

// so that they hold valid date
if(day > thisMonthMaxDay ())
{

// set day to 1 and increment month

day = 1;
month++;
}
if(month > 12)
{
// month to January (1) and increment year
month = 1;
year++;

}

void nextday(date & 4)

{

cout << “Date “; d.show();

31,

30,

0))

31 };

28 days

Chapter 13: Operator Overloading 45

++d; // invokes operator function
cout << “ on increment becomes “; d.show();
cout << endl;

}

void main()

{

date d1(14, 4, 1971);
date d2(28, 2, 1992); // leap year
date 43(28, 2, 1993);
date d4(31, 12, 1995);

nextday(dl };
nextday(d2);
nextday(d3);
nextday(d4);
date today:
today.read() ;
nextday(today);
}

Run

Date 14:4:1971 on increment becomes 15:4:1971
Date 28:2:1992 on increment becomes 29:2:1992
Date 28:2:1993 on increment becomes 1:3:1993

Date 31:12:1995 on increment becomes 1:1:1996

Enter date <dd mm yyyy>: 11 9 1996
Date 11:9:1996 on increment becomes 12:9: 1996

_ The updation of date requires to take care of conditions such as whether the year is a leap year or
not. If it is leap year and month is February, it will have 29 days instead of usual 28 days. Such cases
need to be handled explicitly (sec the second and third output line in Run).

13.8 Binary Operator Overloading

The concept of overloading unary operators applies also to the binary operators. The syntax for
overloading a binary operator is shown in Figure 13.4.

Function return type: primitive, void, or user defined

Keyword
— Operator to be Overloaded

f Argument to Operator.
Function
/\

ReturnType operator OperatorSymbol (arg)
{

// body of Operator function

Figure 13.4: Syntax for overloading a binary operator

The binary overloaded operator function takes the first object as an implicit operand and the second
operand must be passed explicitly. The data members of the first object are accessed without using the

446 Mastering C++

dot operator whereas, the second argument members can be accessed using the dot operator if the
argument is an object, otherwise it can be accessed directly. Note that, the overloaded binary operator
function is a member function defined in the first object's class.

The following examples illustrate the overloading of binary operators:

complex operator + (complex cl);

int operator - (int a);

void operator * (complex cl);

void operator / (complex cl);

complex operator += (complex cl);
Similar to unary operators, binary operators also have to return values so that cascaded assignment
expressions can be formed. The programs illustrating the overloading of binary operators are discussed
in the following sections.

13.9 Arithmetic Operators

Consider an example involving operations on complex numbers to illustrate the concept of binary
operator overloading. Complex numbers consists of two parts: real part and imaginary part. It is repre-
sented as (x+1iy), where x is the real part and y is the imaginary part. The process of performing the
addition operation is illustrated below. Let c1, c2, and c3 be three complex numbers represented as
follows:

cl = x1 + i yl;

c2 = x2 + 1 y2;
The operation c3 = cl1 + c2is given by

€ = (cl.x1 +c2.x2) +1i (cl.yl + c2.y2);

The program complex1 . cpp performs addition of complex numbers without operator overloading.
// complexl.cpp: Addition of Complex Numbers

#include <iostream.h>
class complex

{
private:
float real; // real part of complex number
float imag; // imaginary part of complex number
public:

complex () // no argument constructor

{

real = imag = 0.0;

}
void getdatal()
{
cout << "Real Part ? *;
cin >> real;
cout << "Imag Part ? *;
cin >> imag;
}
complex AddComplex(complex c2); // Add complex numbers
void outdata(char *msg) // display complex number
{

cout << endl << msg;

Chapter 13: Operator Overloading 447

cout << " (" << real;
cout << ", " << imag << ")";

}i

// adds default and c2 complex objects
complex complex: :AddComplex (complex c2)
{

complex temp; // object temp of complex class
temp.real = real + c2.real; // add real parts

temp.imag = imag + c2.imag; // add imaginary parts

return(temp); // return complex object

}
void main{()
{
complex cl, c2, c3; // cl, c2, ¢3 are object of complex class
cout << "Enter Complex Number cl .." << endl;
cl.getdata();
cout << "Enter Complex Number c2 .." << endl;
c2.getdatal();

c3 = cl.AddComplex(c2); // add cl and c2 and assign the result to c3
c3.outdata("c3 = cl.AddComplex(c2): ");

}

Run

Enter Complex Number cl ..

Real Part ? 2,5

Imag Part ? 2.0

Enter Complex Number c2

Real Part ? 3.0

Imag Part ? 1.3

c3 = c1.AddComplex(c2 }: (5.5, 3.5)

In main (). the statement

c3 = cl.AddComplex(c2);
invokes the member function AddComplex () of the c1 object’s class and adds c2 to it and then the
returned result object is assigned to c3. By overloading the + operator, this clumsy and dense-looking
statement can be represented in the simplified standard (usual) form as follows:

c3 = cl + c2;
The program complex2 .cpp illustrates the overloading of the binary operator + in order to perform
addition of complex numbers.

/ / complex2.cpp: Complex Numbers operations with operator overloading
#include <iostream.h>
class complex
{
private:
float real; // real part of complex number
float imag; // imaginary part of complex number

448 Mastering C++

public:
complex () // no argument constructor
{
real = imag = 0.0;
}
void getdata() // read complex number
{
cout << "Real Part ? ";
cin >> real;
cout << "Imag Part ? *;
cin >> imag;

}
complex operator + (complex c2); // complex addition
void outdata(char *msg) // display complex number

{
cout << endl << msg;
cout << " (" << real;
cout << ", " << imag << ")";

}i
// add default and c2 complex objects
~complex complex::operator + (complex c2)

{
complex temp; // object temp of complex class
temp.real = real + c2.real; // add real parts
temp.imag = imag + c2.imag; // add imaginary parts
return(temp); // return complex object

}

void main()

{
complex cl, c2, c3; // cl, c2, c3 are object of complex class
cout << "Enter Complex Number cl .." << endl;
cl.getdatal();
cout << "Enter Complex Number c2 .." << endl;
c2.getdata();
€3 =cl + c2; // add cl and c2 and assign the result to ¢3
c3.outdata("c3 = cl + c2: *); // display result
}
Run

Enter Complex Number cl ..
Real Part ? 2.5

Imag Part ? 2.0

Enter Complex Number c2
Real Part ? 3.0

Imag Part ? 1.5

c3 =cl +c2: (5.5, 3.5)

In the class complex, the operator+ () function is declared as follows.

Chapter 13: Operator Overloading 449

complex operator + (complex c2)
This function takes one explicit argument of type complex and returns the result of complex type.
In a statement such as

c3 =cl + ¢2; // c3 = cl.operator+(c2):
itis very important to understand the mechanism of returning a value and relating the arguments of the
operator to its objects. When the compiler encounters such expressions, it examines the argument
types of the operator. In this case, since the first argument is of type complex, the compiler realizes
that it must invoke the operator member + () function defined in the complex class (Figure 13.5).

Instances of the class complex

Client program

r”‘_‘\\\\\\\\———’

complex () <
(constructor)

private member
variables

L complex cl,c2,c3;

_{cl.getdata();
c2.getdatal();

float real;
float imag;

outdata ()
(szrenur)
()eaepaeb

c3=cl+c2;

c3.outdata();

operator+ (complex c2)

(addition)

Figure 13.5: Complex numbers and operator overioading

The argument on the left side of the operator (c1 in this case) is the object of a class having
overloaded operator function as its member function. The object on the right side (c2 in this case) of
the operator is passed as the actual argument to the overloaded operator function. The operator returns
avalue (complex object temp in this case), which can be assigned to another object (c3 in this case) or
can be used in other ways (as argument or term in an expression, etc.).

The expression c1+c2 invokes operator + () member function, c1 object's data members are
accessed directly since, this is the object of which the operator function is a member. The right operand
is treated as an argument to the function and its members are accessed using the member access dot
operator (as c2.real and c2.imag).

In the overloading of binary operators, as a rule, the left-hand operand is used to invoke the
operator function and the right-hand operand is passed as an argument to the operator function. The
mechanism of handling operands of an overloaded binary operator is illustrated in Figure 13.6.

Similarly, functions can be created to overload other operators to perform addition, subtraction,
multiplication, division, etc. The program complex3. cpp illustrates the overloading of various arith-
metic operators for manipulating complex numbers.

450 Mastering C++

complex operator+(complex c2)
{

complex temp;

temp

[}

)

)

[]

t

i

]

]

i

5.5 4—-:——-—temp.x= X + c2.x|;
]

]

y !
[}

[

]

]

3.5 4—1———. temp.y= + c2.y|q

i
: return (temp) ;
])
c3 = cl + c2;
t t t

| 55 |x 25 | x 30 |x
35 |v 20 | vy 15 |y

Figure 13.6: Operator overloading in class complex

s
// complex3.cpp: Manipulation of Complex Numbers
#include <iostream.h>
class complex

{
private:
float real;
float imag;
public:
complex ()
{
real = imag = 0;
}
void getdata() // read complex number
{
cout << "Real Part ? ";
cin >> real;
cout << "Imag Part ? *;
cin >> imag;
}
void outdata(char *msg) // display complex number
{
cout << endl << msg;
cout << " (" << real;
cout << *, " << imag << “)”;
}

complex operator + (complex c2);

